TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 352, Number 5, Pages 2205–2216 S 0002-9947(99)02433-2 Article electronically published on July 26, 1999

RELATIVE COMPLETIONS OF LINEAR GROUPS OVER $\mathbb{Z}[t]$ AND $\mathbb{Z}[t, t^{-1}]$

KEVIN P. KNUDSON

ABSTRACT. We compute the completion of the groups $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t,t^{-1}])$ relative to the obvious homomorphisms to $SL_n(\mathbb{Q})$; this is a generalization of the classical Malcev completion. We also make partial computations of the rational second cohomology of these groups.

The Malcev (or \mathbb{Q} -) completion of a group Γ is a prounipotent group \mathcal{P} defined over \mathbb{Q} together with a homomorphism $\varphi : \Gamma \to \mathcal{P}$ satisfying the following universal mapping property: If $\psi : \Gamma \to \mathcal{U}$ is a map of Γ into a prounipotent group, then there is a unique map $\Phi : \mathcal{P} \to \mathcal{U}$ such that $\psi = \Phi \varphi$. If $H_1(\Gamma, \mathbb{Q}) = 0$, then the group \mathcal{P} is trivial and is therefore useless for studying Γ . In particular, the Malcev completions of the groups $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t, t^{-1}])$ are trivial when $n \geq 3$ (this follows from the work of Suslin [15]).

Here we consider Deligne's notion of relative completion. Suppose $\rho: \Gamma \to S$ is a representation of Γ in a semisimple linear algebraic group over \mathbb{Q} . Suppose that the image of ρ is Zariski dense in S. The completion of Γ relative to ρ is a proalgebraic group \mathcal{G} over \mathbb{Q} , which is an extension of S by a prounipotent group \mathcal{U} , and homomorphism $\tilde{\rho}: \Gamma \to \mathcal{G}$ which lifts ρ and has Zariski dense image. When S is the trivial group, \mathcal{G} is simply the classical Malcev completion. The relative completion satisfies an obvious universal mapping property. The basic theory of relative completion was developed by R. Hain [6] (and independently by R. Looijenga (unpublished)), and is reviewed in Section 2 below.

In this paper, we consider the completions of the groups $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t,t^{-1}])$ relative to the homomorphisms to $SL_n(\mathbb{Q})$ given by setting t=0 (respectively, t=1). There is an obvious candidate for the relative completion, namely the proalgebraic group $SL_n(\mathbb{Q}[[T]])$. The map

$$SL_n(\mathbb{Z}[t]) \to SL_n(\mathbb{Q}[[T]])$$

is the obvious inclusion and the map

$$SL_n(\mathbb{Z}[t, t^{-1}]) \to SL_n(\mathbb{Q}[[T]])$$

is induced by the map $t \mapsto 1 + T$.

Theorem. For all $n \geq 3$, the group $SL_n(\mathbb{Q}[[T]])$ is the relative completion of both $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t,t^{-1}])$.

Received by the editors January 20, 1998.

¹⁹⁹¹ Mathematics Subject Classification. Primary 55P60, 20G35, 20H05; Secondary 20G10, 20F14.

Supported by an NSF Postdoctoral Fellowship, grant no. DMS-9627503.

Remark. We expect that the theorem holds for an arbitrary simple group G of sufficiently large rank (large enough to guarantee the vanishing of $H^2(G(\mathbb{Z}), A)$ for nontrivial $G(\mathbb{Q})$ -modules A). We have chosen to work with SL_n just to be concrete.

The theorem does not hold for n=2 (see Section 5 below). Our proof breaks down in this case essentially because the \mathbb{Z} -Lie algebra $\mathfrak{sl}_2(\mathbb{Z})$ is not perfect.

We use this result to study the cohomology of the groups $SL_n(\mathbb{Z}[t])$ and $SL_n(\mathbb{Z}[t,t^{-1}])$. This is motivated by an attempt to find unstable analogues of the Fundamental Theorem of Algebraic K-theory. Recall that if A is a regular ring, then there are natural isomorphisms $K_{\bullet}(A[t]) \cong K_{\bullet}(A)$ and $K_{\bullet}(A[t,t^{-1}]) \cong K_{\bullet}(A) \oplus K_{\bullet-1}(A)$. An unstable analogue does exist for infinite fields: If k is an infinite field, then $H_{\bullet}(SL_n(k[t]), \mathbb{Z}) \cong H_{\bullet}(SL_n(k), \mathbb{Z})$ for all n [10]. Since \mathbb{Z} is regular, one might guess that an analogous statement holds for n sufficiently large. We note, however, that if such a result holds, we must have $n \geq 3$ since $H_1(SL_2(\mathbb{Z}[t]), \mathbb{Z})$ has infinite rank [4], while $H_1(SL_2(\mathbb{Z}), \mathbb{Z}) \cong \mathbb{Z}/12$.

The basic idea is to use continuous cohomology. Following Hain [5], we define the continuous cohomology of a group π to be

$$H_{\mathrm{cts}}^{\bullet}(\pi, \mathbb{Q}) = \varinjlim H^{\bullet}(\pi/\Gamma^r \pi, \mathbb{Q}),$$

where $\Gamma^{\bullet}\pi$ denotes the lower central series of π . There is a natural map

$$H_{\mathrm{cts}}^{\bullet}(\pi,\mathbb{Q}) \longrightarrow H^{\bullet}(\pi,\mathbb{Q})$$

which is injective in degree 2 provided $H_1(\pi, \mathbb{Q})$ is finite dimensional.

Consider the extension

$$1 \longrightarrow K(R) \longrightarrow SL_n(R) \longrightarrow SL_n(\mathbb{Z}) \longrightarrow 1$$

for $R = \mathbb{Z}[t], \mathbb{Z}[t, t^{-1}]$. This yields a spectral sequence for computing the rational cohomology of $SL_n(R)$. In light of the following result, it is reasonable to conjecture that $H^2(SL_n(R), \mathbb{Q}) = 0$ for $n \geq 3$.

Theorem. If
$$n \geq 3$$
, then $H^0(SL_n(\mathbb{Z}), H^2_{cts}(K(R), \mathbb{Q})) = 0$.

Of course, one can see that $H^2(SL_n(R), \mathbb{Q}) = 0$ for $n \geq 5$ by using van der Kallen's stability theorem [8] and the Fundamental Theorem of Algebraic K-theory. The above result provides evidence for the vanishing of $H^2(SL_n(R), \mathbb{Q})$ for n = 3, 4. We note, however, that $H^2(SL_2(\mathbb{Z}[t]), \mathbb{Q})$ has infinite rank (this is a consequence of results of Grunewald, et al. [4]).

The study of the relative completion of the fundamental group of a complex algebraic variety X is related to the study of variations of mixed Hodge structure over X [6]. Moreover, relative completions were used with great success by R. Hain in his study of mapping class groups \mathcal{M}_g and Torelli groups \mathcal{T}_g [6],[7]. In particular, he was able to provide a presentation of the Malcev Lie algebra of \mathcal{T}_g which in turn gives a partial computation of $H^2(\mathcal{T}_g,\mathbb{Q})$. This also yields a description of the completion \mathcal{G}_g of \mathcal{M}_g with respect to its representation on the first homology of the surface. However, the map $\mathcal{M}_g \to \mathcal{G}_g$ remains a mystery. As far as we know, the results of this paper provide the first concrete descriptions of relative completions and the associated homomorphisms aside from the obvious trivial ones $(e.g., SL_n(\mathbb{Z}) \to SL_n(\mathbb{Q}), n \geq 3)$.

This paper obviously owes a great deal to the work of Dick Hain and I thank him for suggesting this problem to me. I would also like to thank the referee for many useful comments.

1. Malcev completions

Recall that the Malcev completion of a group Γ is a prounipotent group \mathcal{M} over \mathbb{Q} , together with a map $\Gamma \to \mathcal{M}$ which satisfies the obvious universal mapping property. We recall the construction of \mathcal{M} as given by Bousfield [3].

First, suppose that G is a nilpotent group. The Malcev completion of G consists of a group \widehat{G} and a homomorphism $j: G \to \widehat{G}$. It is characterized by the following three properties [13, Appendix A, Cor. 3.8]:

- 1. \widehat{G} is nilpotent and uniquely divisible.
- 2. The kernel of j is the torsion subgroup of G.
- 3. If $x \in \widehat{G}$, then $x^n \in \text{im } j$ for some $n \neq 0$.

Quillen constructs \widehat{G} as the set of grouplike elements of the completed group algebra $\widehat{\mathbb{Q}}G$ (completed with respect to the augmentation ideal).

Now, if G is an arbitrary group, denote by G_r the nilpotent group G/Γ^rG , where $\Gamma^{\bullet}G$ is the lower central series of G. Following Bousfield [3], we define the Malcev completion of G to be

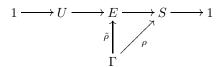
$$\mathcal{M} = \underline{\lim} \, \widehat{G}_r$$

where \widehat{G}_r is the Malcev completion of G_r . One can easily check that the group \mathcal{M} satisfies the universal mapping property.

2. Relative completions

In this section we review the theory of relative completion. All results in this section are due to R. Hain [6].

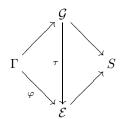
Let Γ be a group and $\rho:\Gamma\to S$ a Zariski dense representation of Γ in a semisimple algebraic group S over $\mathbb Q$. The completion of Γ relative to ρ may be constructed as follows. Consider all commutative diagrams of the form



where E is a linear algebraic group over \mathbb{Q} , U is a unipotent subgroup of E, and the image of $\tilde{\rho}$ is Zariski dense. The collection of all such diagrams forms an inverse system [6, Prop 2.1] and we define the completion of Γ relative to ρ to be

$$\mathcal{G} = \lim E$$
.

The group \mathcal{G} satisfies the following universal mapping property. Suppose that \mathcal{E} is a proalgebraic group over \mathbb{Q} such that there is a map $\mathcal{E} \to S$ with prounipotent kernel. If $\varphi: \Gamma \to \mathcal{E}$ is a homomorphism whose composition with $\mathcal{E} \to S$ is ρ , then there is a unique map $\tau: \mathcal{G} \to \mathcal{E}$ such that the following diagram commutes:



Denote by L the image of $\rho: \Gamma \to S$ and by T the kernel. Let $\Gamma \to \mathcal{G}$ be the completion of Γ relative to ρ and let \mathcal{U} be the prounipotent radical of \mathcal{G} . Consider the commutative diagram

Denote by \mathcal{T} the classical Malcev completion of T. The universal mapping property of \mathcal{T} gives a map $\Phi: \mathcal{T} \to \mathcal{U}$ whose composition with $T \to \mathcal{T}$ is the map $T \to \mathcal{U}$. Denote the kernel of Φ by \mathcal{K} . We have the following three results.

Proposition 2.1 ([6, Prop. 4.5]). Suppose that $H_1(T, \mathbb{Q})$ is finite dimensional. If the action of L on $H_1(T, \mathbb{Q})$ extends to a rational representation of S, then K is contained in the center of T.

Proposition 2.2 ([6, Prop. 4.6]). Suppose that the natural action of L on $H_1(T, \mathbb{Q})$ extends to a rational representation of S. If $H^1(L, A) = 0$ for all rational representations A of S, then Φ is surjective.

Proposition 2.3 ([6, Prop. 4.13]). Suppose $H_1(T, \mathbb{Q})$ is finite dimensional and that $H^1(L, A)$ vanishes for all rational representations A of S. Suppose further that $H^2(L, A) = 0$ for all nontrivial rational representations of S. Then there is a surjective map $H_2(L, \mathbb{Q}) \to \mathcal{K}$.

Observe that $H^1(SL_n(\mathbb{Z}), A) = 0$ for $n \geq 3$ by Raghunathan's theorem [14]. Moreover, the second condition that $H^2(SL_n(\mathbb{Z}), A) = 0$ for all nontrivial A holds for $n \geq 9$ [2].¹

3. The Malcev completion of K(R)

Consider the short exact sequences

$$1 \longrightarrow K(R) \longrightarrow SL_n(R) \longrightarrow SL_n(\mathbb{Z}) \longrightarrow 1$$

for $R = \mathbb{Z}[t], \mathbb{Z}[t, t^{-1}]$, and $n \geq 3$. In this section we compute the Malcev completion of K(R).

Denote by $\mathfrak{m}_{\mathbb{Z}[t]}$ (resp. $\mathfrak{m}_{\mathbb{Z}[t,t^{-1}]}$) the ideal (t) (resp. (t-1)) of $\mathbb{Z}[t]$ (resp. $\mathbb{Z}[t,t^{-1}]$). For each $l \geq 1$, define a subgroup $K^l(R)$ by

$$K^l(R) = \{X \in K(R) : X \equiv I \mod \mathfrak{m}_R^l\}.$$

One can easily check that $K^{\bullet}(R)$ is a descending central series; that is,

$$[K^i, K^j] \subseteq K^{i+j}$$
.

It follows that for each i, $\Gamma^i K \subseteq K^i$.

For each $i \geq 1$, define homomorphisms ρ_i , σ_i as follows. If $X \in K^i(\mathbb{Z}[t])$, write

$$X = I + t^i X_i + \dots + t^m X_m$$

where each X_j is a matrix with integer entries. Define

$$\rho_i: K^i(\mathbb{Z}[t]) \to \mathfrak{s}l_n(\mathbb{Z})$$

by $\rho_i(X) = X_i$. Similarly, if $Y \in K^i(\mathbb{Z}[t, t^{-1}])$ we may write

$$Y = I + (t-1)^{i}Y_{i} \mod (t-1)^{i+1}$$

¹The result in [2] only implies vanishing for $n \geq 9$. However, this is easily strengthened to $n \geq 4$; one need only compute a certain constant which depends on the weights of $SL_n(\mathbb{Q})$ -modules.

since $(t^{-1}-1)^i \equiv (-1)^i (t-1)^i \mod (t-1)^{i+1}$. Now define

$$\sigma_i: K^i(\mathbb{Z}[t, t^{-1}]) \to \mathfrak{s}l_n(\mathbb{Z})$$

by $\sigma_i(Y) = Y_i$. These maps are well defined since the condition $\det Z = 1$ in $K^i(R)$ forces trace $Z_i = 0$. Moreover, it is easy to see that the maps ρ_i , σ_i are surjective group homomorphisms with kernel K^{i+1} . Thus for each $i \geq 1$, we have

$$K^{i}(R)/K^{i+1}(R) \cong \mathfrak{sl}_{n}(\mathbb{Z}).$$

Consider the associated graded \mathbb{Z} -Lie algebra

$$\operatorname{Gr}^{\bullet}K(R) = \bigoplus_{i \ge 1} K^{i}(R)/K^{i+1}(R).$$

If $n \geq 3$, the Lie algebra $\mathfrak{sl}_n(\mathbb{Z})$ satisfies $\mathfrak{sl}_n(\mathbb{Z}) = [\mathfrak{sl}_n(\mathbb{Z}), \mathfrak{sl}_n(\mathbb{Z})]$. It follows that the graded algebra $\operatorname{Gr}^{\bullet}K(R)$ is generated by $\operatorname{Gr}^1K(R)$. The following lemma is easily proved (compare with [13, Appendix A, Prop. 3.5]).

Lemma 3.1. Let G be a group with filtration $G = G^1 \supseteq G^2 \supseteq \cdots$. Then the associated graded Lie algebra $Gr^{\bullet}G$ is generated by Gr^1G if and only if $G^r = G^{r+1}\Gamma^r$ for each $r \ge 1$.

Corollary 3.2. Suppose $\bigcap G^r = \{1\}$. If $Gr^{\bullet}G$ is generated by Gr^1G , then the completions of G with respect to the filtration G^{\bullet} and the lower central series $\Gamma^{\bullet}G$ are isomorphic; that is,

$$\underline{\lim} G/G^r \cong \underline{\lim} G/\Gamma^r G.$$

Proof. Consider the short exact sequence

$$1 \longrightarrow G^r/\Gamma^r \longrightarrow G/\Gamma^r \longrightarrow G/G^r \longrightarrow 1.$$

Since $\operatorname{Gr}^{\bullet}G$ is generated by Gr^1G , we have $G^r = G^{r+1}\Gamma^r$ for each r. It follows that the inverse system $\{G^r/\Gamma^r\}$ is surjective. This, in turn, implies that the natural map

$$\lim G/\Gamma^r \longrightarrow \lim G/G^r$$

is surjective. Injectivity follows since the assumption that $\bigcap G^r = \{1\}$ implies that $\lim G^r/\Gamma^r = \{1\}$.

We now compute the Malcev completions of the groups $K(R)/K^i(R)$. We first provide the following result.

Lemma 3.3. The completion of $\mathbb{Z}[t,t^{-1}]$ with respect to the ideal (t-1) is the power series ring $\mathbb{Z}[[T]]$. The canonical map $\mathbb{Z}[t,t^{-1}] \to \mathbb{Z}[[T]]$ sends t to 1+T.

Proof. This follows easily once we note that in $\mathbb{Z}[t,t^{-1}]/(t-1)^m$, we have $t^{-1}=1+(t-1)+\cdots+(t-1)^{m-1}$, so that any polynomial in $\mathbb{Z}[t,t^{-1}]/(t-1)^m$ may be written as a polynomial in nonnegative powers of (t-1).

Consider the short exact sequence

$$1 \longrightarrow \overline{K} \longrightarrow SL_n(\mathbb{Z}[[T]]) \stackrel{T=0}{\longrightarrow} SL_n(\mathbb{Z}) \longrightarrow 1.$$

Corollary 3.4. The group \overline{K} is the completion of K(R) with respect to the filtration $K^1(R) \supset K^2(R) \supset \cdots$ and with respect to the lower central series of K(R).

Proof. The first assertion follows from Lemma 3.3 and the second from Corollary 3.2.

Observe that the group \overline{K} has a filtration given by powers of T (exactly as $K(\mathbb{Z}[t])$ does) and that the successive graded quotients are isomorphic to $\mathfrak{sl}_n(\mathbb{Z})$. Denote the filtration by \overline{K}^{\bullet} .

We have an analogous sequence over \mathbb{Q} :

$$1 \longrightarrow \mathcal{U} \longrightarrow SL_n(\mathbb{Q}[[T]]) \xrightarrow{T=0} SL_n(\mathbb{Q}) \longrightarrow 1,$$

and the corresponding T-adic filtration \mathcal{U}^{\bullet} in \mathcal{U} . In this case, the successive graded quotients are isomorphic to $\mathfrak{s}l_n(\mathbb{Q})$. We can assemble our exact sequences into a commutative diagram

Proposition 3.5. The map $K(R)/K^r(R) \xrightarrow{j} \mathcal{U}/\mathcal{U}^r$ is the Malcev completion.

Proof. According to Quillen's criterion (see Section 1) we must check three things. First, the group $\mathcal{U}/\mathcal{U}^r$ is nilpotent and uniquely divisible. Nilpotency is obvious, so suppose

$$Y = I + TY_1 + \dots + T^{r-1}Y_{r-1}$$

is an element of $\mathcal{U}/\mathcal{U}^r$. For each n > 0, we must find a unique $X \in \mathcal{U}/\mathcal{U}^r$ with $X^n = Y$. For an arbitrary $X \in \mathcal{U}/\mathcal{U}^r$, write $X = I + TX_1 + \cdots + T^{r-1}X_{r-1}$, and consider the equation

$$Y = X^{n}$$

$$= I + TnX_{1} + T^{2}(nX_{2} + {n \choose 2}X_{1}^{2}) + \dots + T^{r-1}(nX_{r-1} + p(\lbrace X_{i}\rbrace_{i=1}^{r-2}))$$

where $p(X_1, ..., X_{r-2})$ is a polynomial in the X_i , $i \le r-2$. Clearly, we can solve this equation inductively for the X_i and find a unique X.

Second, we must show that the kernel of j is the torsion subgroup of $K(R)/K^r(R)$. This is clear since $K(R)/K^r(R)$ is torsion-free (i.e., if some power of $X \in K$ lies in K^r , then $X \in K^r$ already) and the map is injective.

Finally, we must show that if $X \in \mathcal{U}/\mathcal{U}^r$, then $X^m \in \text{im } j$ for some $m \neq 0$. We prove this by induction on r, beginning at r = 2. Let $X = I + TX_1$ be an element of $\mathcal{U}/\mathcal{U}^2$. Then there is an m > 0 such that mX_1 consists of integer entries. Then $X^m = I + TmX_1$ lies in the image of j. Now suppose the result holds for r - 1 and consider the commutative diagram

Suppose $X \in \mathcal{U}/\mathcal{U}^r$. Denote its image in $\mathcal{U}/\mathcal{U}^{r-1}$ by \overline{X} . By the inductive hypothesis, there is an integer $m \neq 0$ with $\overline{X}^m = \overline{Y}$ for some $\overline{Y} \in K/K^{r-1}$. Choose a lift Y of \overline{Y} in K/K^r . Then Y maps to \overline{X}^m in $\mathcal{U}/\mathcal{U}^{r-1}$. But X^m also maps to \overline{X}^m so that $X^mY^{-1} = Z$ for some $Z \in \mathcal{U}^{r-1}/\mathcal{U}^r$. Now, there exists some

 $W \in K^{r-1}/K^r \cong \mathfrak{sl}_n(\mathbb{Z})$ with $Z^p = W$ for some $p \neq 0$. Since $Y = Z^{-1}X^m$, we have

$$Y^p = (Z^{-1}X^m)^p$$

= $Z^{-p}X^{mp}$ (since $\mathcal{U}^{r-1}/\mathcal{U}^r$ is central)
= $W^{-1}X^{mp}$.

Thus, $X^{mp} = WY^p$ belongs to K/K^r and the induction is complete.

Theorem 3.6. The inclusion $K(R) \to \mathcal{U}$ is the Malcev completion.

Proof. Since $\mathcal{U} = \lim \mathcal{U}/\mathcal{U}^r$ and $\mathcal{U}/\mathcal{U}^r$ is the Malcev completion of $K(R)/K^r(R)$, the theorem will follow immediately if we can show that $K^r(R) = \Gamma^r K(R)$ for each r. This follows from the next two lemmas.

Lemma 3.7 ([3], 13.6). Let F^{\bullet} be a central series in a group G such that:

- 1. The natural map $G \to \lim G/F^s$ is an isomorphism.
- 2. F^s/F^{s+1} is torsion-free for $s \ge 1$. 3. The Lie product $G/F^2 \otimes F^s/F^{s+1} \to F^{s+1}/F^{s+2}$ is surjective for $s \ge 1$.
- 4. G/F^2 is finitely generated.

Then
$$\Gamma^s G = F^s$$
 for $s \ge 1$.

Lemma 3.8 ([3], 13.4). Let G be a group and denote by \overline{G} the completion \overline{G} = $\lim G/\Gamma^rG$. Then the following statements are equivalent:

- 1. The map $\overline{G} \to \overline{G}$ is an isomorphism.
- 2. The map $G/\Gamma^r G \to \overline{G}/\Gamma^r \overline{G}$ is an isomorphism for each r > 1.

Completion of the proof of Theorem 3.6. Consider the group

$$\overline{K} = \ker(SL_n(\mathbb{Z}[[T]]) \xrightarrow{T=0} SL_n(\mathbb{Z}))$$

with its T-adic filtration \overline{K}^{\bullet} . Note that Lemma 3.7 shows that $\overline{K}^r = \Gamma^r \overline{K}$ for each r: the first two conditions are clear, as is the fourth; the third condition follows since the Lie algebra $\mathfrak{sl}_n(\mathbb{Z})$ is perfect (it is here that we must exclude the case n=2). Since

$$\overline{K} = \lim K(R)/K^r(R) = \lim K(R)/\Gamma^r K(R)$$

(the last equality is Corollary 3.4), and since

$$\begin{array}{rcl} \overline{K} & = & \varprojlim \overline{K}/\overline{K}^r \\ & = & \varprojlim \overline{K}/\Gamma^r \overline{K} \\ & = & \overline{\overline{K}}, \end{array}$$

Lemma 3.8 implies that $K(R)/\Gamma^r K(R) \cong \overline{K}/\Gamma^r \overline{K}$ for all r. Consider the commutative diagram

$$\begin{array}{cccc} K(R)/\Gamma^r K(R) & \stackrel{\cong}{\to} & \overline{K}/\Gamma^r \overline{K} \\ \downarrow & & \downarrow \cong \\ K(R)/K^r(R) & \stackrel{\cong}{\to} & \overline{K}/\overline{K}^r. \end{array}$$

It follows that $K^r(R) = \Gamma^r K(R)$ and hence \mathcal{U} is the Malcev completion of K(R).

Remark 3.9. Even if Lemma 3.8 were not available, we could still prove the result as follows. Denote by \mathcal{M}_r the Malcev completion of $K(R)/\Gamma^r K(R)$, and by $\mathcal{M} = \varprojlim \mathcal{M}_r$ the Malcev completion of K(R). Then the map $K(R) \to \mathcal{M}$ factors through \overline{K} . Moreover, by the universal property of \mathcal{M} , we get a unique map $\mathcal{M} \to \mathcal{U}$ which is easily seen to be an isomorphism since it has an inverse given by the universal property of the Malcev completion $\overline{K} \to \mathcal{U}$.

Corollary 3.10. If $n \geq 3$, then $H_1(K(R), \mathbb{Z}) \cong H_1(\overline{K}, \mathbb{Z}) \cong \mathfrak{sl}_n(\mathbb{Z})$.

Proof. The first isomorphism follows from Lemma 3.8 and the second isomorphism from Lemma 3.7. \Box

4. The relative completion of $SL_n(R)$

We first prove the following result.

Lemma 4.1. The group \mathcal{U} has trivial center.

Proof. Let X be a central element of \mathcal{U} . For a pair of integers $1 \leq i, j \leq n$, denote by $E_{ij}(a)$ the matrix having i, j-entry equal to a and all other entries 0. By computing the product (in both orders) of X with elementary matrices of the form $I + E_{i,j}(T) \in \mathcal{U}$ for $i \neq j$, we see that X must be a diagonal matrix with all entries equal, say $1 + a_1T + a_2T^2 + \cdots$. However, since X must have determinant 1, we see that $a_i = 0$ for all $i \geq 1$.

Theorem 4.2. If $n \geq 3$, then the map $SL_n(\mathbb{Z}[t]) \xrightarrow{t \mapsto T} SL_n(\mathbb{Q}[[T]])$ (resp. $SL_n(\mathbb{Z}[t,t^{-1}]) \xrightarrow{t \mapsto 1+T} SL_n(\mathbb{Q}[[T]])$) is the completion with respect to the map $SL_n(\mathbb{Z}[t]) \xrightarrow{t=0} SL_n(\mathbb{Q})$ (resp. $SL_n(\mathbb{Z}[t,t^{-1}]) \xrightarrow{t=1} SL_n(\mathbb{Q})$).

Proof. The relative completion is a proalgebraic group which is an extension

$$(4.1) 1 \longrightarrow \mathcal{P} \longrightarrow \mathcal{G} \longrightarrow SL_n(\mathbb{Q}) \longrightarrow 1$$

where \mathcal{P} is prounipotent. By the universal property of \mathcal{U} , we have a unique map $\Phi: \mathcal{U} \to \mathcal{P}$ induced by the map $K(R) \to \mathcal{P}$. Since $H^1(SL_n(\mathbb{Z}), A) = 0$ for all rational $SL_n(\mathbb{Q})$ -modules A [14], we see that Φ is surjective (Proposition 2.2). On the other hand, since $H_1(K(R), \mathbb{Q}) \cong \mathfrak{sl}_n(\mathbb{Q})$ is finite dimensional and the action of $SL_n(\mathbb{Z})$ on $H_1(K(R), \mathbb{Q})$ extends to a rational representation of $SL_n(\mathbb{Q})$, Proposition 2.1 implies that the kernel of Φ is central in \mathcal{U} . But by Lemma 4.1, the center of \mathcal{U} is trivial. Thus, Φ is injective and $\mathcal{U} \cong \mathcal{P}$. Since the extension (4.1) is split ([6, Prop. 4.4]), it follows that $\mathcal{G} \cong SL_n(\mathbb{Q}[[T]])$.

Remark 4.3. An alternate proof of the injectivity of Φ can be obtained via Proposition 2.3 for n sufficiently large. Since $H^2(SL_n(\mathbb{Z}),A)$ vanishes for nontrivial A when $n \geq 9$ [2], Proposition 2.3 asserts that the kernel of Φ is bounded above by $H_2(SL_n(\mathbb{Z}),\mathbb{Q})=0$. This can certainly be improved to $n \geq 4$ (but not to n=3 since examples exist where $H^2(SL_3(\mathbb{Z}),A)\neq 0$).

5. The case
$$n=2$$

The proof of Theorem 4.2 breaks down in the case n=2 for a variety of reasons.

- 1. The Lie algebra $\mathfrak{sl}_2(\mathbb{Z})$ is not perfect.
- 2. Raghunathan's theorem on the vanishing of $H^1(SL_n(\mathbb{Z}), A)$ does not apply for n = 2.

3. Borel's result for the vanishing of $H^2(SL_n(\mathbb{Z}), A)$ cannot be strengthened to include n = 2.

However, one can make the following observations. Denote by $\mathcal{G}(\mathbb{Z})$ the completion of $SL_2(\mathbb{Z})$ relative to its canonical inclusion in $SL_2(\mathbb{Q})$, and by $\mathcal{G}(R)$ the completion of $SL_2(R)$ ($R = \mathbb{Z}[t], \mathbb{Z}[t, t^{-1}]$) relative to the map $SL_2(R) \stackrel{\text{mod } \mathfrak{m}_R}{\longrightarrow} SL_2(\mathbb{Q})$. The group $\mathcal{G}(\mathbb{Z})$ is *not* isomorphic to $SL_2(\mathbb{Q})$; in fact, it is an extension of $SL_2(\mathbb{Q})$ by a free prounipotent group with infinite dimensional H_1 (see [7, Rmk. 3.9]).

We have a commutative diagram

The map $\Phi: \mathcal{G}(R) \to \mathcal{G}(\mathbb{Z})$ is induced by the composition $SL_2(R) \to SL_2(\mathbb{Z}) \to \mathcal{G}(\mathbb{Z})$ and the map $\Psi: \mathcal{G}(\mathbb{Z}) \to \mathcal{G}(R)$ is induced by the composition $SL_2(\mathbb{Z}) \to SL_2(R) \to \mathcal{G}(R)$. Since the composition $SL_2(\mathbb{Z}) \to SL_2(R) \to SL_2(\mathbb{Z})$ is the identity, we see that $\Phi \circ \Psi = \mathrm{id}_{\mathcal{G}(\mathbb{Z})}$.

If $n \geq 3$, then the map $SL_n(\mathbb{Z}) \to SL_n(\mathbb{Q})$ is the relative completion so that the completion of $SL_n(R)$ is an extension of the completion of $SL_n(\mathbb{Z})$ by the Malcev completion of K(R). This leads us to make the following conjecture.

Conjecture 5.1. The map $K(R) \longrightarrow W$ is the Malcev completion.

Note that there is at least some hope for this since W is properly contained in the kernel of the map $\mathcal{G}(R) \to SL_2(\mathbb{Q})$ so that W is prounipotent.

6. Cohomology

In this section we provide evidence for the following conjecture.

Conjecture 6.1. If
$$n \geq 3$$
, then $H^2(SL_n(R), \mathbb{Q}) = 0$.

Note that this conjecture is true for $n \geq 5$ for the following reason. If $n \geq 5$, then by van der Kallen's stability theorem [8], we have

$$H_2(SL_n(R), \mathbb{Z}) \cong H_2(SL(R), \mathbb{Z}) \cong K_2(R).$$

It follows that if $n \geq 5$, then $H_2(SL_n(R), \mathbb{Q}) \cong K_2(R) \otimes \mathbb{Q}$. Since $K_2(\mathbb{Z}[t]) \cong K_2(\mathbb{Z})$ and $K_2(\mathbb{Z}[t, t^{-1}]) \cong K_2(\mathbb{Z}) \oplus K_1(\mathbb{Z})$, we see that $K_2(R) \otimes \mathbb{Q} = 0$.

The tool that we will use is continuous cohomology. We define the continuous cohomology of a group π by

$$H_{\mathrm{cts}}^{\bullet}(\pi, \mathbb{Q}) = \lim_{r \to \infty} H^{\bullet}(\pi/\Gamma^{r}\pi, \mathbb{Q}).$$

The basic properties of continuous cohomology were established by Hain [5]. We note the following facts.

Proposition 6.2 ([5], Thm. 5.1). The natural map $H^k_{\text{cts}}(\pi, \mathbb{Q}) \to H^k(\pi, \mathbb{Q})$ is an isomorphism for k = 0, 1 and is injective for k = 2.

The map on H^2 need not be surjective in general. A group π is called *pseudo-nilpotent* if the natural map $H^{\bullet}_{\mathrm{cts}}(\pi,\mathbb{Q}) \to H^{\bullet}(\pi,\mathbb{Q})$ is an isomorphism. Examples of pseudo-nilpotent groups include the pure braid groups, free groups and the fundamental groups of affine curves over \mathbb{C} .

Proposition 6.3 ([5, Thm. 3.7]). Let π be a group with $H_1(\pi, \mathbb{Q})$ finite dimensional. Let \mathcal{P} be the Malcev completion of π and denote by \mathfrak{p} the Lie algebra of \mathcal{P} . Then the natural map

$$H_{\mathrm{cts}}^{\bullet}(\pi,\mathbb{Q}) \longrightarrow H_{\mathrm{cts}}^{\bullet}(\mathfrak{p},\mathbb{Q})$$

is an isomorphism.

Thus, if $H_1(\pi,\mathbb{Q})$ is finite dimensional, we can use Lie algebra cohomology to obtain a lower bound on the dimension of $H^2(\pi,\mathbb{Q})$. We will not compute $H^2_{\mathrm{cts}}(K(R),\mathbb{Q})$ explicitly. However, we note the following result.

Proposition 6.4. If $n \geq 3$, then dim $H^2_{cts}(K(R), \mathbb{Q}) \geq (n^2 - 1)^2/4$.

Proof. By a result of Lubotzky and Magid [11], if G is a nilpotent group with $b_1 = \dim H_1(G,\mathbb{Q})$ finite, then the second Betti number b_2 satisfies $b_2 \geq b_1^2/4$. In the case of $K(R)/K^r(R)$, since $H_1(K/K^r,\mathbb{Q}) \cong \mathfrak{sl}_n(\mathbb{Q})$, we see that $b_2(K/K^r) \geq$ $(n^2-1)^2/4$ for each r.

To show that $H^2(SL_n(R), \mathbb{Q})$ vanishes, it would suffice to show the following three things.

- 1. $H^2(SL_n(\mathbb{Z}), \mathbb{Q}) = 0$.
- 2. $H^1(SL_n(\mathbb{Z}), H^1(K(R), \mathbb{Q})) = 0.$
- 3. $H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0.$

The first statement is clear. The second follows from [14] since $H^1(K(R), \mathbb{Q})$ is the adjoint representation $\mathfrak{s}l_n(\mathbb{Q})$. The third statement is true for $n \geq 5$.

Proposition 6.5. If $n \geq 5$, then $H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0$.

Proof. Consider the Hochschild–Serre spectral sequence

$$E_2^{p,q} = H^p(SL_n(\mathbb{Z}), H^q(K(R), \mathbb{Q})) \Longrightarrow H^{p+q}(SL_n(R), \mathbb{Q}).$$

We know that $H^2(SL_n(R), \mathbb{Q}) = 0$ for $n \geq 5$ (see the remarks following Conjecture 5.1). Note also that $H^2(SL_n(\mathbb{Z}), \mathbb{Q}) = 0$ for $n \geq 0$ (see the remarks following Conjecture 5.1). Note also that $H^2(SL_n(\mathbb{Z}), H^1(K(R), \mathbb{Q})) = 0$ and $H^3(SL_n(\mathbb{Z}), \mathbb{Q}) = 0$. It follows that $d_2: E_2^{0,2} \to E_2^{2,1}$ and $d_3: E_3^{0,2} \to E_3^{3,0}$ are both the zero map and hence $E_\infty^{0,2} = H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q}))$. But this group must vanish since $E_\infty^{1,1}$ and $E_\infty^{2,0}$ do.

The next result provides evidence for the vanishing of $H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q}))$ when n = 3, 4. We first state the following lemma, which can be proved via direct computation.

Lemma 6.6. Let $\Gamma_{a_1,...,a_{n-1}}$ be the irreducible $SL_n(\mathbb{Q})$ -module with highest weight $(a_1 + \cdots + a_{n-1})L_1 + \cdots + a_{n-1}L_{n-1}$, where L_1, \ldots, L_{n-1} are the weights of the fundamental representation. Then we have the following isomorphisms of $SL_n(\mathbb{Q})$ modules:

- 1. $\mathfrak{s}l_3(\mathbb{Q}) \otimes \mathfrak{s}l_3(\mathbb{Q}) \cong \Gamma_{2,2} \oplus \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1} \oplus \Gamma_{1,1} \oplus \Gamma_{0,0}$

- 2. $\bigwedge^{2} \mathfrak{sl}_{3}(\mathbb{Q}) \cong \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1},$ 3. $\bigwedge^{3} \mathfrak{sl}_{3}(\mathbb{Q}) \cong \Gamma_{2,2} \oplus \Gamma_{3,0} \oplus \Gamma_{0,3} \oplus \Gamma_{1,1} \oplus \Gamma_{0,0},$ 4. $\mathfrak{sl}_{4}(\mathbb{Q}) \otimes \mathfrak{sl}_{4}(\mathbb{Q}) \cong \Gamma_{2,0,2} \oplus \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{0,2,0} \oplus \Gamma_{1,0,1} \oplus \Gamma_{1,0,1} \oplus \Gamma_{0,0,0},$
- 5. $\bigwedge_{0}^{2} \mathfrak{sl}_{4}(\mathbb{Q}) \cong \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{1,0,1},$
- 6. $\bigwedge^3 \mathfrak{s}l_4(\mathbb{Q}) \cong \Gamma_{4,0,0} \oplus \Gamma_{0,0,4} \oplus \Gamma_{1,2,1} \oplus \Gamma_{2,0,2} \oplus \Gamma_{2,1,0} \oplus \Gamma_{0,1,2} \oplus \Gamma_{0,2,0} \oplus \Gamma_{1,0,1}$ $\oplus \Gamma_{0,0,0}$.

Theorem 6.7. If $n \geq 3$, then $H^0(SL_n(\mathbb{Z}), H^2_{cts}(K(R), \mathbb{Q})) = 0$.

Proof. We need only consider the cases n=3,4. It suffices to show that

$$H^0(SL_n(\mathbb{Z}), H^2(K/K^l, \mathbb{Q})) = 0$$

for each l. We use Lie algebra cohomology. Denote by $\mathfrak u$ the Lie algebra of $\mathcal U$ and consider the T-adic filtration \mathfrak{u}^{\bullet} . The Malcev Lie algebra of K/K^{l} is the Lie algebra $\mathfrak{u}_l = \mathfrak{u}/\mathfrak{u}^l$. Observe that for each l, the quotient $\mathfrak{u}^{l-1}/\mathfrak{u}^l$ is isomorphic as an $SL_n(\mathbb{Q})$ -module to the adjoint representation $\mathfrak{sl}_n(\mathbb{Q})$, but as a Lie algebra it is abelian (i.e., to compute the bracket in $\mathfrak{u}^{l-1}/\mathfrak{u}^l$, we lift elements to \mathfrak{u}^{l-1} , apply [,], and project back; but the commutator of any two elements in \mathfrak{u}^{l-1} lies in \mathfrak{u}^l and so projects to 0).

We proceed by induction on l, beginning at l = 2. The Lie algebra \mathfrak{u}_2 is abelian of dimension $n^2 - 1$; as an $SL_n(\mathbb{Q})$ -module it is the adjoint representation $\mathfrak{sl}_n(\mathbb{Q})$. Thus $H^2(\mathfrak{u}_2,\mathbb{Q})\cong \bigwedge^2\mathfrak{sl}_n(\mathbb{Q})$ as an $SL_n(\mathbb{Q})$ -module. By Lemma 6.6, parts 2 and 5, we see that $H^0(SL_n(\mathbb{Z}),H^2(\mathfrak{u}_2,\mathbb{Q}))=0$. Now, suppose that l>2 and that $H^0(SL_n(\mathbb{Z}), H^2(\mathfrak{u}_{l-1}, \mathbb{Q})) = 0$. Consider the short exact sequence

$$0 \longrightarrow \mathfrak{u}^{l-1}/\mathfrak{u}^l \longrightarrow \mathfrak{u}_l \longrightarrow \mathfrak{u}_{l-1} \longrightarrow 0.$$

The kernel is central in \mathfrak{u}_l . Consider the Hochschild–Serre spectral sequence

$$E_2^{p,q} = H^p(\mathfrak{u}_{l-1}, H^q(\mathfrak{u}^{l-1}/\mathfrak{u}^l, \mathbb{Q})) \Longrightarrow H^{p+q}(\mathfrak{u}_l, \mathbb{Q}).$$

We have isomorphisms of $SL_n(\mathbb{Q})$ -modules:

- 1. $H^2(\mathfrak{u}_{l-1}, H^0(\mathfrak{u}^{l-1}/\mathfrak{u}^l, \mathbb{Q})) = H^2(\mathfrak{u}_{l-1}, \mathbb{Q}),$ 2. $H^1(\mathfrak{u}_{l-1}, H^1(\mathfrak{u}^{l-1}/\mathfrak{u}^l, \mathbb{Q})) \cong \mathfrak{sl}_n(\mathbb{Q}) \otimes \mathfrak{sl}_n(\mathbb{Q}),$ 3. $H^0(\mathfrak{u}_{l-1}, H^2(\mathfrak{u}^{l-1}/\mathfrak{u}^l, \mathbb{Q})) \cong \operatorname{Hom}_{\mathbb{Q}}(\bigwedge^2 \mathfrak{sl}_n(\mathbb{Q}), \mathbb{Q}).$

By induction, the $SL_n(\mathbb{Z})$ invariants of the first module are trivial and by Lemma 6.6, parts 2 and 5, so are the invariants of the last group. It follows that

$$H^0(SL_n(\mathbb{Z}), E_{\infty}^{0,2}) = 0.$$

Also, since

$$H^1(SL_n(\mathbb{Z}), E_{\infty}^{0,1}) = H^1(SL_n(\mathbb{Z}), \mathfrak{s}l_n(\mathbb{Q})) = 0,$$

the long exact cohomology sequence associated to the extension

$$0 \longrightarrow E_{\infty}^{0,1} \stackrel{d_2}{\longrightarrow} H^2(\mathfrak{u}_{l-1}, \mathbb{Q}) \longrightarrow E_{\infty}^{2,0} \longrightarrow 0$$

shows that $H^0(SL_n(\mathbb{Z}), E_{\infty}^{2,0}) = 0$. It remains to show that $H^0(SL_n(\mathbb{Z}), E_{\infty}^{1,1})$

Note that $E_2^{1,1}$ contains a copy of the trivial representation (parts 1 and 4 of Lemma 6.6). However, the differential (known as transgression [1])

$$d_2: E_2^{1,1} \longrightarrow H^3(\mathfrak{u}_{l-1}, \mathbb{Q})$$

is easily seen to map the trivial representation onto a copy of the trivial representation in the image (this copy arises from the map in cohomology induced by the map $\mathfrak{u}_{l-1} \to \mathfrak{s}l_n(\mathbb{Q})$; use parts 3 and 6 of Lemma 6.6). It follows that $E_{\infty}^{1,1}$ contains no copies of the trivial representation and hence $H^0(SL_n(\mathbb{Z}), E_{\infty}^{1,1}) = 0$. Thus

$$H^0(SL_n(\mathbb{Z}), H^2(\mathfrak{u}_l, \mathbb{Q})) = 0$$

and the induction is complete.

One might conjecture that K(R) is pseudo-nilpotent (we do not know if this is the case). If so, it would follow that $H^0(SL_n(\mathbb{Z}), H^2(K(R), \mathbb{Q})) = 0$ and hence $H^2(SL_n(R), \mathbb{Q}) = 0$ for $n \geq 3$.

References

- A. Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955), 397–432. MR 17:282b
- A. Borel, Stable real cohomology of arithmetic groups. II, in Manifolds and Lie groups, Progress in Mathematics 14, Birkhäuser, Boston (1981), 21–55. MR 83h:22023
- A. Bousfield, Homological localization towers for groups and Π-modules, Mem. Amer. Math. Soc. 10 no. 186 (1977). MR 56:5688
- 4. F. Grunewald, J. Mennicke and L. Vaserstein, On the groups $SL_2(\mathbb{Z}[x])$ and $SL_2(k[x,y])$, Israel J. Math. 86 (1994), 157–193. MR 95h:20061
- R. Hain, Algebraic cycles and extensions of variations of mixed Hodge structure, in Complex geometry and Lie theory, Proc. Symp. Pure Math. 53 (1991), 175–221. MR 92j:14008
- R. Hain, Completions of mapping class groups and the cycle C-C⁻, in Mapping class groups and moduli spaces of Riemann surfaces, Contemp. Math. 150 (1993), 75–105. MR 95e:14018
- R. Hain, Infinitesimal presentations of the Torelli groups, J. Amer. Math. Soc. 10 (1997), 597–651. MR 97k:14024
- W. van der Kallen, Homology stability for linear groups, Invent. Math. 60 (1980), 269–295.
 MR 82c:18011
- A. Knapp, Lie groups, Lie algebras, and cohomology, Princeton University Press, Princeton, NJ, 1988. MR:89j:22034
- K. Knudson, The homology of special linear groups over polynomial rings, Ann. Sci. Ecole Norm. Sup. (4) 30 (1997), 385–416.
- A. Lubotzky, A. Magid, Cohomology, Poincaré series, and group algebras of unipotent groups, Amer. J. Math. 107 (1985), 531–553. MR 86h:20063
- D. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411-418.
 MR 38:245
- 13. D. Quillen, Rational homotopy theory, Ann. of Math. (2) $\bf 90$ (1969), 205–295. MR $\bf 41:$ 2678
- M. Raghunathan, Cohomology of arithmetic subgroups of algebraic groups. I, Ann. of Math. 86 (1967), 409–424. MR 37:2898
- A. Suslin, On the structure of special linear groups over polynomial rings, Math. USSR Izv. 11 (1977), 221-238. MR 57:12482

Department of Mathematics, Northwestern University, Evanston, Illinois 60208 $Current\ address$: Department of Mathematics, Wayne State University, Detroit, Michigan 48202